Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean.
نویسندگان
چکیده
Atlantic herring is an excellent species for studying the genetic basis of adaptation in geographically distant populations because of its characteristically large population sizes and low genetic drift. In this study we compared whole-genome resequencing data of Atlantic herring populations from both sides of the Atlantic Ocean. An important finding was the very low degree of genetic differentiation among geographically distant populations (fixation index = 0.026), suggesting lack of reproductive isolation across the ocean. This feature of the Atlantic herring facilitates the detection of genetic factors affecting adaptation because of the sharp contrast between loci showing genetic differentiation resulting from natural selection and the low background noise resulting from genetic drift. We show that genetic factors associated with timing of reproduction are shared between genetically distinct and geographically distant populations. The genes for thyroid-stimulating hormone receptor (TSHR), the SOX11 transcription factor (SOX11), calmodulin (CALM), and estrogen receptor 2 (ESR2A), all with a significant role in reproductive biology, were among the loci that showed the most consistent association with spawning time throughout the species range. In fact, the same two SNPs located at the 5' end of TSHR showed the most significant association with spawning time in both the east and west Atlantic. We also identified unexpected haplotype sharing between spring-spawning oceanic herring and autumn-spawning populations across the Atlantic Ocean and the Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning time but may be involved in adaptation to ecological factor(s) shared among these populations.
منابع مشابه
Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya
This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...
متن کاملParallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature.
Despite the enormous economic and ecological importance of marine organisms, the spatial scales of adaptation and biocomplexity remain largely unknown. Yet, the preservation of local stocks that possess adaptive diversity is critical to the long-term maintenance of productive stable fisheries and ecosystems. Here, we document genomic evidence of range-wide adaptive differentiation in a broadcas...
متن کاملRange-wide parallel climate-associated genomic clines in Atlantic salmon
Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We ...
متن کامل“Islands of Divergence” in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements
In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geo...
متن کاملEvolution of the Atlantic Multidecadal Variability in a Model with an Improved North Atlantic Current
This article investigates the dynamics and temporal evolution of the Atlantic multidecadal variability (AMV) in a coupled climate model. The model contains a correction to the North Atlantic flow field to improve the path of the North Atlantic Current, thereby alleviating the surface cold bias, a common problem with climate models, and offering a unique opportunity to study the AMV in a model. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 17 شماره
صفحات -
تاریخ انتشار 2017